



# **NTIA Spectrum Monitoring**

Doug Boulware
<a href="mailto:dboulware@ntia.gov">dboulware@ntia.gov</a>
Computer Scientist

Michael Cotton
<a href="mailto:mcotton@ntia.gov">mcotton@ntia.gov</a>
Division Chief, ITS Theory Division

National Telecommunications and Information Administration
Institute for Telecommunication Sciences
Boulder, CO







## Outline

- Motivation
- Boulder Wireless Test City (BWTC)
- Heterogeneous, distributed, persistent monitoring
- Conclusion





# ITS History in Spectrum Measurement and Monitoring

## Commerce and NTIA systems since 1927:

(Clockwise from low-left)

- Radio measurement car, 1927
- RSMS-1, 1980
- RSMS-3, Angel Island
- RSMS-1
- RSMS-4
- NTIA suitcase system, Fort Irwin, 2000







### Motivation

- Increasing demand for finite spectrum
- Congestion and dynamic usage of spectrum may lead to unintended interference/degradation
- Jamming and intentional interference has become cheaper and easier
- Wireless security lags behind cybersecurity
- Traditional monitoring approaches are not standardized and do not scale to the current and future challenges
- Value in persistent sensing
- Real-world wireless test environments are needed to develop advanced wireless technologies







## **Future of Spectrum Monitoring**

- Monitoring paradigm shift
- Real-world development/test
- Distributed, persistent, and automated spectrum monitoring
  - Heterogeneous sensors
  - Standardized and open source software
  - Common metadata
  - Automation for security and scalability







## **Boulder Wireless Test City**

- Distributed sensors throughout Boulder and ITS Table Mountain Field Site and Radio Quiet Zone
- Variety of propagation environments
- Diverse spectrum activity
- Ongoing Cooperative agreement with CU to deploy RF sensors throughout campus
- Actively working additional deployments and fiber access with Boulder Research and Administrative Network (BRAN)
- Spectrum Occupancy and Characterization Sensing (SCOS) software







## Heterogeneous Sensing

- Customize to mission
- Reduce cost to scale when necessary
- COTS components
- Interchangeable components + repeatable, automated, rigorous process to go from lab to field



Antenna GPS Antenna RF Cable 1 Bandpass filter Signal Analyzer Data Mini-POE computer 16 VDC **Ethernet Cable** POE

Basset hound sensor (~\$25k)

Greyhound sensor (~5k)





#### **SCOS Sensor**

- Application Programming Interface (API) establishes universal language to interact with heterogeneous sensors
- Currently supports 2 commercial SDRs
- Open sourced to allow additional integrations
- Discoverable sensing Actions
  - Edge processing
  - Research transition path
- Onboard scheduler

```
SCOS Sensor v None
  Api V1 Root
Api V1 Root
SCOS sensor API root.
 GET /api/v1/
 HTTP 200 OK
 Allow: GET, OPTIONS
 Content-Type: application/json
 Vary: Accept
     "capabilities": "https://greyhound10.sms.internal/api/v1/capabilities/",
     "schedule": "https://greyhound10.sms.internal/api/v1/schedule/",
     "status": "https://greyhound10.sms.internal/api/v1/status",
     "tasks": "https://greyhound10.sms.internal/api/v1/tasks/",
     "users": "https://greyhound10.sms.internal/api/v1/users/"
```





## **SCOS Manager**

- Centralized command and control for large networks of distributed sensors
  - Manage sensor schedules
  - Search and download archived RF data
  - Analytics and visualization
- Analytics API supports third party integrations
- Secure data service from sensors - NTIA website available for authorized Federal users in 2021 Q1



| ensor en sor              | Operations   |
|---------------------------|--------------|
| reyhound 10.sms. internal | <b>5 6 0</b> |
| greyhound 2.sms. internal | <b>ä b 0</b> |
| greyhound 5.sms. internal | <b>8 8 9</b> |
| greyhound8.sms.internal   | <b>6 6 0</b> |
| reyhound 9.sms. internal  | <b>5 6 0</b> |





## Interoperability and Reusability

- Break down silos by encouraging interoperability and reusability
  - IEEE 802.15.22.3 standardization
  - Open source common metadata
- 9 SigMF Extensions in sigmf-ns-ntia in public GitHub repo
  - ntia-core adds generally useful metadata fields
  - ntia-sensor defines hardware components and settings
  - ntia-algorithm describes the measurement performed (detectors, algorithms, etc)
  - ntia-calibration provides information about calibration factors applied to the data
  - ntia-emitter gives information about the emitter being measured
  - ntia-location gives information about the types of coordinate systems used in the metadata.
  - ntia-environment gives information about the environment around a sensor or emitter
  - ntia-waveform provides metadata to describe measured or transmitted waveforms
  - ntia-scos provides metadata for the NTIA Spectrum Characterization and Occupancy Sensing (SCOS)
     implementation





## Scalability and Security

#### Automation

- Automated provisioning and maintenance
- Foreman Operating System (OS) deployment and status/monitoring
- Puppet dev/test/prod environments support technology evolution and experimentation
- Automated software updates

#### Confidentiality & Integrity

- NIST Special Publication 800-53 security controls
- Ansible automated security hardening of edge devices
- Calibration and sensor definition files characterize every sensor
- Provide metadata with every acquisition
- Lab verification and configuration management of sensing actions







## Conclusion: Local Research National Impact

- Edge processing
- Coordinated sensing
- Characterize RF environment
  - Broadband survey
  - Band occupancy measurements
  - Noise floor measurements
  - Spectrum map
- Propagation model development & validation
- Compliance and usage validation
- Enforcement methods
  - Anomaly/Interference detection
  - Classification
  - Geolocation
  - Reporting, Notification, and Mitigation



Partnering with industry, academia, and other Federal agencies in the development of advanced spectrum monitoring technologies





### References

- NTA Spectrum Monitoring Website
- Cotton, et al., "3.45-3.65 GHz Spectrum Occupancy from Long-Term Measurements in 2018 and 2019 at Four Coastal Locations," NTIA TR-20-548, 04/20.
- Boulware, sigmf-ns-ntia, NTIA Github, 03/20.
- Mathys, "<u>Spectrum Monitoring Network: Tradeoffs, Results, and Future Directions</u>", GNU Radio Conference, Huntsville, AL, 09/19.
- Anderson, scos-sensor, NTIA Github, 11/19.
- Anderson, "A Cost-Efficient, Field-Ready Sensor to Detect and Decode LTE FDD Downlink at Low Signal Levels," GNU Radio Conference, Boulder, CO, 10/16.
- Wepman, et al., "RF Sensors for Spectrum Monitoring Applications: Fundamentals and RF Performance Test Plan," NTIA TR-15-519, 08/15.
- Cotton, et al., "An Overview of the NTIA/NIST Spectrum Monitoring Pilot Program,"
   International Workshop on Smart Spectrum at IEEE WCNC 2015, New Orleans, LA, 03/15.
- Cotton, Dalke, "<u>Spectrum Occupancy Measurements of the 3550–3650 MHz Maritime</u> <u>Radar Band Near San Diego, CA</u>," NTIA TR-14-500, 01/14.
- IEEE 802.15.22